
1  Re-titled Ph.D. thesis of Warren F. Davis, copyright by MIT, submitted to the
Department of Physics at the Massachusetts Institute of Technology (MIT) on May 4,
1979, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

2  Current address: Davis Associates, Inc., 43 Holden Road, Newton, MA 02465-
1909, U.S.A.

Gravitational Radiation
in the Brans-Dicke and Rosen bi-metric Theories of Gravity

with a Comparison with General Relativity1

by

Warren Frederick Davis2

ABSTRACT

General relationships are developed for gravitational radiation in the weak
field approximation in the Brans-Dicke scalar-tensor theory and the Rosen
bi-metric theory.  Both periodic and aperiodic systems are considered, with
results for the former being of quadrupole order.  The specific cases of a
binary orbital system and a system of colliding particles are treated.  An
attempt to test the validity of the Brans-Dicke, Rosen, and general relativistic
theories is made by applying results to the observed binary pulsar PSR
1913+16.
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3  This paper is written from the perspective of 1979.

4  Joseph H. Taylor, Jr., and Russell A. Hulse received the Nobel Prize in Physics
in 1993 "for the discovery of a new type of pulsar, a discovery that has opened up new
possibilities for the study of gravitation".
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1.0  Introduction

In recent months there has been an upsurge of interest in the theoretical prediction of
gravitational radiation in general relativity following observations by Taylor et al. (1) on
the binary pulsar PSR 1913+16.3, 4  They have found a systematic decrease of the orbital
period of the system that is consistent with energy loss due to gravitational radiation as
predicted by Einstein’s general theory of relativity.  The compact nature of the
participating objects is such as to rule out convincingly significant contributions from
other mechanisms such as tidal interaction.  These observations represent the first tests
of general relativity outside the solar system and also constitute the first convincing
experimental evidence, though indirect, for gravitational waves.

These observations simultaneously raise the question as to whether it might not also be
possible to discriminate, on the basis of the same data, between general relativity and
other competing theories of gravity whose predictions within the solar system are
indistinguishable from Einstein’s theory.  Here we consider gravitational radiation in
the two theories that currently represent viable alternatives:  the Brans-Dicke scalar-
tensor theory (2,3) and the Rosen bi-metric theory (4,5).

There are principally two distinct methods whereby gravitational radiation can be
estimated in the theories.  First, the EIH (Einstein, Infeld, Hoffmann) method (6)
consists in solving the equations of motion in a power series in a suitable parameter
such as .  The method is recursive and in principle converges to the exact solution. v c
Gravitational radiation can be estimated by using the motion so derived to deduce the
rate of change of total energy and by assuming that any decrease that is not accounted
for by other means goes off as gravitational radiation.  The second method, the weak
field approximation (7), consists in linearizing the field equations by approximating to
the case in which gravitational effects are everywhere small.  The field equations then
reduce to linear wave equations from which radiation can be deduced directly.  Results
are not in principle exact, being only as good as the validity of the weak field
approximation itself.

In the EIH method, radiation is inferred to the order of recursion to which the theorist is
willing or capable of going, with exact results possible in principle in the limit.  In the
weak field approximation, radiation is seen directly and in many cases can be computed
exactly within the linearized theory, but may or may not be exact in terms of the correct
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nonlinear theory.  So far it has not been possible to find a satisfactory theoretical bridge
between the predictions of the two methods, and the problem remains open.  This
situation has resulted in an ongoing controversy as to the correct radiation rate
predicted by general relativity (8).  It is possible that predictions made in the competing
theories may establish bounds on the radiation rate which will be useful in clarifying
the relationship between the EIH and weak field methods.

The general theory of relativity predicts radiation that, in the lowest order, is
proportional to the third derivative of the quadrupole moment of the mass-energy
distribution.  This prediction follows in either of the two methods.  It is a consequence
of the conservation equations that the first derivative of the monopole moment and the
second derivative of the dipole moment are zero, so that radiation is first seen in the
quadrupole term.  In the alternative theories the situation is different.

The essential feature of the Brans-Dicke theory is that the gravitational "constant" isG
in fact not a constant but is determined by the totality of matter in the universe through
an auxiliary scalar field equation.  expresses the ability of mass-energy to interactG
gravitationally.  The non-universality of means that the effective interaction strengthG
of a quantity of mass-energy is determined by the local value of the scalar field.  ToG
make an analogy with electromagnetic theory, the effective gravitational "charge-to-
mass" ratio is not a constant.  For the same reason that the existence of differing
charge-to-mass ratios among the particles produces non-vanishing electric dipole
moments, the variation of in the Brans-Dicke theory introduces dipole terms in theG
EIH gravitational radiation equations.

Will (9) has computed the radiation due to these terms in the Brans-Dicke theory for
both the scalar and the tensor field.  Eardley (l0) has investigated the effect of these
terms on PSR 1913+16.  The extent of the dipole effect depends on the difference of the
self-gravitational binding energy per unit mass for the two bodies and is thus
dependent also on the internal structure of the objects.  When the objects are in circular
orbits, the time variation of the scalar field at each object due to the motion of the other
is zero and the dipole contributions consequently drop out.  Under these circumstances
the dominant surviving terms are of quadrupole order.

Here we develop expressions for quadrupole gravitational radiation in the Brans-Dicke
theory using the weak field technique and apply these results, which are applicable in
general, to the specific example of PSR 1913+16, though its orbit is eccentric.  We also
use the weak field approach to compute the power spectral density to all multipole
orders associated with a system of colliding particles.  This result is useful as a basis for
the study of gravitational radiation emitted by a hot gas in the Brans-Dicke theory.
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Dipole radiation also appears in the application of the EIH method to the bi-metric
theory of Rosen.  In Rosen's theory there are two metrics:  one that describes purely
gravitational effects, as is general relativity, and a second that accounts for inertial
effects independent of gravity.  While the gravitational constant does not vary with
space-time position as in the Brans-Dicke theory, the energy-momentum tensor in the
field equations is scaled by the square-root of the ratio of the determinants of the two
metrics.  Thus the effective mass-energy is dependent on the local field, and dipole
radiation follows as a consequence as in the Brans-Dicke theory.  Again the dipole
radiation is a function of the internal structure of the participating bodies and is zero in
certain circumstances such as the case of circular orbits.  For this reason, it is again of
some interest to compute the radiation rate due to the quadrupole term.

Will and Eardley (12) have computed the dipole radiation rate in the bi-metric theory
and have found that it carries negative energy.  That is, the dipole term acts to increase,
rather than decrease, the energy of the system.  Rosen (13) has argued that it is possible
to assume a time-symmetric solution, rather than the retarded solution used by Will
and Eardley, with the consequence that there is predicted no energy gain or loss due to
radiation of any order.

We investigate here quadrupole gravitational radiation in Rosen's bi-metric theory
using the conventional retarded solution in the weak field approximation.  As in the
Brans-Dicke theory, we also investigate the power spectral density associated with a
system of colliding particles.
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2.0  Quadrupole Gravitational Radiation in the Brans-Dicke Theory

General Results

Field Equations

The field equations in the Brans-Dicke theory (2,3) are

(2.1)*
2 8

3 2
ϕ

π
ω

λ
λ=

+
T

and

(2.2)R T g Tµν µν µν
λ

λ µ ν µ ν
π

ϕ
ω
ω ϕ

ϕ
ω
ϕ

ϕ ϕ= − −
+
+







− −
8 1

3 2

1
2; ; ; ;

The Ricci tensor is formed from the metric tensor as in general relativity.  isRµν gµν ϕ
the scalar field, determined by the auxiliary equation (2.1), which plays the role of . G

is a free parameter of the theory whose value cannot be determined a priori.  In fact,ω
one of the objectives of developing here the relationships for quadrupole radiation is to
determine if observations such as those of Taylor et al. on PSR 1913+16 can be used to
establish bounds on .ω

In addition to the field equations (2.1) and (2.2), we have the conservation law in the
Brans-Dicke theory

(2.3)T µν
ν; = 0

as in general relativity.

Finally, it can be shown that the energy-momentum tensor associated with the scalar
field isϕ

(2.4)( )T g g( )ϕ µν µ ν µν ρ
ρ

µ ν µν

ω
πϕ

ϕ ϕ ϕ ϕ
π

ϕ ϕ= −



 + −

8

1

2

1

8
2

; ; ; ; ; ; *

The Brans-Dicke theory is motivated by an attempt to incorporate Mach's principle into
relativity.  The view that we adopt here is that the system whose radiation we wish to
compute is embedded within the rest of the mass-energy of the universe which, for our
purposes, is static.  Therefore , which is related to , consists of a dominant constantϕ G
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term determined by the rest of the universe and a perturbative term induced byϕ0 ψ
our system.

(2.5)ϕ ϕ ψ= +0

constant,               "small".ϕ0 = ψ =

Weak Field Limit - Coordinate Condition

The passage to the weak field limit is achieved by assuming that the space-time metric
is everywhere adequately represented bygµν

(2.6)g hµν µν µνη= +

where is "small" and is the Minkowski metric of flat spacetime.  By definition,hµν ηµν

. (2.7)g gµν
νλ

µ
λδ=

This fact and (2.6) imply that

. (2.8)g hµν µν µνη= −

To the order with which we are concerned, all raising and lowering of indices is with
and covariant derivatives go over to ordinary partial derivatives.ηµν

Equations (2.1) and (2.5) give immediately,

. (2.9)*
2 8

3 2
ψ

π
ω

λ
λ=

+
T

The use of (2.6) and (2.8) in leads, with (2.2), to the weak field tensor equationRµν

(2.10)2 161 2R h h h h Sµν µν λ µ ν
λ

µ λ ν
λ

ν λ µ
λ

µνπ( ) = + − − = −* , , , , , ,

where
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(2.11)S T Tµν µν µν
λ

λ µ νϕ η
ω
ω π

ϕ ψ≡ −
+
+







+− −
0

1
0

11

3 2

1

8 , ,

to first order in and .  denotes the term in that is of N-th order in .ψ hµν R N
µν
( ) Rµν hµν

The solution of the system (2.9) and (2.10) would be considerably simplified if the scalar
field did not couple into the tensor field by appearing in the source term .ψ hµν Sµν

Because of the Bianchi identities

R g Rµν µν

ν
−



 =

1

2
0

;

there are four degrees of freedom that are not uniquely specified by the tensor field
equations.  Consequently we have at our disposal four coordinate, or gauge, conditions
that can be used to great advantage.

By inspection of (2.10) and (2.11), the term involving could be eliminated ifψ

. (2.12)h h hλ µ ν
λ

µ λ ν
λ

ν λ µ
λ

µ νϕ ψ, , , , , , , ,− − = − −2 0
1

If we demand that the following coordinate condition be satisfied

, (2.13)h hµ λ
λ

λ µ
λ

µϕ ψ, , ,− = −1

2 0
1

then (2.12) will in fact be true.  To see this, take the derivative of (2.13) with respect to

,xν

.h hµ λ ν
λ

λ µ ν
λ

µ νϕ ψ, , , , , ,− = −1

2 0
1

Now exchange and and utilize the commutivity of partial differentiation to getµ ν

.h hν λ µ
λ

λ µ ν
λ

µ νϕ ψ, , , , , ,− = −1

2 0
1

The sum of these two expressions, with the overall sign reversed, is just (2.12).
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The condition (2.13), incidentally, goes over to the weak field version of the so-called
harmonic coordinate condition if the scalar field goes to zero.ψ

With (2.12) established by the coordinate condition (2.13), the tensor field equation
(2.10) is now considerably simplified.

(2.14)*
2

0
116

1

3 2
h T Tµν µν µν

λ
λπϕ η

ω
ω

= − −
+
+







−

Of course, the scalar and tensor fields, though now apparently uncoupled, are in fact
still coupled (as they must be) through the imposition of the coordinate condition (2.13). 
Our objective now is to solve the field equations (2.9) and (2.14) and to use the results to
evaluate the energy momentum tensors associated with the two fields.  But before
doing so we digress to establish the relationship between and .ϕ0 G

Relationship between and G.ϕ0

Consider a very simple static system with zero pressure.  Let

.( )T Tµν
λ

λρ ρ= ⇒ = −d ia g , , ,0 0 0

The tensor field equation (2.14) with  becomes∂ ∂0 0= =t

.( ) ( )*
2

00
2

00 0
1

0
116 1

1

3 2
16

2

3 2
h h= ∇ = − − −

+
+

−





= −
+

+






− −πϕ ρ
ω
ω

ρ πϕ ρ
ω
ω

For a general, but localized, distribution , is( )ρ &
x h00

( )
h d x

x

x x

M

r00 0
1 3

0
14

2

3 2
4

2

3 2
=

+
+





 ′

′
′ −

≅
+

+






− −∫ϕ
ω
ω

ρ
ϕ

ω
ω

&
&

& &

where  and
& &′ − ≅x x r

(2.15)( )M d x x≡ ′ ′∫ 3 & &ρ

We conclude from (2.6) that, in this case,
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.g h
M

r00 00 00 0
11

2 4 2

3 2
= + = − +

+
+

−η ϕ
ω
ω

If this is to go over to the Newtonian result for large r,

,g
M G

r00 1 2 1
2

→ − − = − +Φ

it must be that  and  are related byϕ0 G

. (2.16)ϕ
ω
ω0

1 4 2

3 2
=

+
+





G

When , , and the Brans-Dicke theory goes over to general relativity.ω → ∞ ϕ0
1− → G

Energy-Momentum of the Gravitational Field - Tensor Part

Let us assume that is localized to a finite region.  Outside that region . Tµν Tµν = 0
Then, as a consequence of (2.10) and (2.12),

(2.17)R hµν µν
( )1 2 0= =*

outside the region.  There are many ways to define the energy-momentum tensor of the
gravitational field.  The one most applicable to the present weak field situation is to

consider on the left side of (2.2) to consist of a series of terms in .  In theRµν R N
µν
( )

development of the weak field equation (2.14), we have explicitly left on the leftRµν
( )1

side.  The remaining higher order terms, which so far have been ignored, could be
brought to the right side.  If the source region gives rise to a flux of energy in the form
of gravitational waves, it must be represented in these higher order terms.  Since,
outside the source, (2.17) is true, the lowest order non-zero additional term appearing
now on the right side of (2.14) that could possibly represent such a flux turns out to be

. (2.18)t R Rµν µν µν
λρ

λρ
ϕ
π

η η= −





0 2 2

8

1

2
( ) ( )

We take this as our definition of the gravitational energy-momentum tensor associated

with the tensor field .  is found to behµν Rµν
( )2
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[ ]R h h h h hµν
λκ

λκ ν µ µκ ν λ λν κ µ µν κ λ
( )2 1

2
= − − − + +, , , , , , , ,

[ ][ ]+ − + − −
1

4
2 h h h h hσ κ

κ
κ σ
κ

µ ν
σ

ν µ
σ

µν
σ

, , , , ,

(2.19)[ ][ ]− + − + −
1

4
h h h h h hσν λ σλ ν λν σ

σ
µ

λ σλ
µ

λ
µ

σ
, , , , , ,

Far Field Approximation

The expression for the gravitational tensor defined by (2.18) and (2.19) can bet µν

simplified considerably by taking advantage of approximations valid very far from the
source region.

We anticipate that very far from the source both and will be, approximately,ψ hµν

functions of a single scalar variable ′t

(2.20)′ = −t t r
where

. (2.21)r x xi
i2 =

Such a scalar can be constructed from the vector  by formingx µ

(2.22)′ =t k xλ
λ

with

,                  (2.23)k k0
0 1= − ≡ + k xi i≡ − �

(2.24)�x
x

r
i

i

≡

Over a suitably small region in the far field  can be regarded as a constant vector. k λ

That is, and will be approximately plane.  Any l/r variation or variation of theψ hµν

unit vector  over points in the region can be made arbitrarily small by taking the�x
region to be sufficiently far from the source.  The dominant functional dependency of
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our solutions will be on the scalar .  This fact can be exhibited explicitly by′ = −t t r
expressing all partials of and asψ hµν

(2.25)h
t

x

dh

d t
k h k hµν σ σ

µν
λ σ

λ
µν σ µν

∂
∂

δ, =
′

′
= =� �

and
(2.26)ψ ψσ σ,

�= k

where

, (2.27)( ) ( )h h k x h tµν µν λ
λ

µν= = ′

, (2.28)( ) ( )ψ ψ ψλ
λ= = ′k x t

, (2.29)( ) ( )
�f t

d f t

d t
≡

. (2.30)
∂
∂

δ
λ

σ σ
λx

x
=

Again, because  outside the source region,Tµν = 0

       and            (2.31)*
2 0hµν = *

2 0ψ =

in the far field.  If (2.25) is used in the first of these, we find

,( )*
2h h k h k k hµν µν ρ

ρ
ρ µν

ρ
ρ

ρ
µν= = =, , ,

� ��

implying that

. (2.32)k kρ
ρ = 0

Obviously the same condition follows from the second of (2.31).

We may now use (2.25) and (2.26) to express the coordinate condition (2.13) in the far
field.  From (2.13) we have



-15-

. (2.33)k h k hλ
λ

µ µ
λ

λϕ ψ� � �= +





−
0

1 1

2

Since any constant of integration is of no consequence in the radiation of energy, (2.33)
can be integrated or differentiated by inspection.  In particular

(2.34)k h k hλ
λ

µ µ
λ

λϕ ψ= +





−
0

1 1

2
and

. (2.35)k h k hλ
λ

µ µ
λ

λϕ ψ�� �� ��= +





−
0

1 1

2

These relations stemming from the coordinate condition can be used to effect a

simplification of  (2.19).  First, we notice that the first factor of the second term ofRµν
( )2

(2.19) is just the coordinate condition itself,

.2 2 0
1h h kσ κ

κ
κ σ
κ

σϕ ψ, ,− = − �

For the rest of (2.19), the objective is to use (2.33), (2.34) and (2.35) to draw out of each
term explicit dependency on .  For example,k kµ ν

h h h k k h k k h hλκ
µν κ λ

λκ
κ λ µν

κ
κ

λ
λ µνϕ ψ, , = = +



 =−�� ��

0
1 1

2
0

n��������n

from (2.32), and
    p�p

h h k h k h k k hλν σ
σ

µ
λ

σ λν
λ σ

µ µ ν
λ

λϕ ψ, , = = +





−� � � �
0

1

21

2n�����������n

To ease the notation let

. (2.36)z h≡ +−ϕ ψ λ
λ0

1 1

2

Then (2.33), (2.34), and (2.35) imply that

(2.37)R k k z z h h z h h zµν µ ν
λκ

λκ λκ
λκϕ ψ( )

�� �� � � � � �
2

0
1 21

2

1

4

1

2
= − + − +





−
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in the far field.

 and can be related to each other in the following way.  From the scalar fieldh λ
λ ψ

equation (2.9) we have

, (2.38)( ) ( )
ψ

ω
λ
λ

& &

& & &

& &x t d x
T x t x x

x x
,

,
= −

+
′

′ − ′ −
′ −∫2

3 2
3

and from the tensor field equation (2.14) we have

( ) ( )
h x t d x

T x t x x

x xµν
µνϕ& &

& & &

& &,
,

= ′
′ − ′ −

′ −
−







− ∫4 0
1 3

. (2.39)
( )

−
+
+

′
′ − ′ −

′ −



∫η

ω
ωµν

λ
λ1

3 2
3d x

T x t x x

x x
&

& & &

& &
,

Contraction of (2.39) gives

. (2.40)( ) ( )
h x t d x

T x t x x

x xλ
λ λ

λ

ϕ
ω
ω

& &
& & &

& &,
,

= −
+
+

′
′ − ′ −

′ −
− ∫4

1 2

3 20
1 3

By comparing (2.38) and (2.40) we find immediately that

, (2.41)( ) ( ) ( )h x t x tλ
λ ϕ ω ψ& &

, ,= +−2 1 20
1

and when this is used in the three terms of (2.37), which involve , we find thatz

.( ) ( ) ( )[ ]R k k h h h hµν µ ν
λκ

λκ
λκ

λκ ω ϕ ω ψψ ω ψ( ) �� � � �� �2
0

2 21

2

1

2
2 1 2 1 2= − +



 + + + + +







−

(2.42)
The second term of the definition (2.18) of  involvest µν

[ ] [ ]η ηλρ
λρ

λρ
λ ρ

ρ
ρR k k k k( )2 0= = =� �

by (2.32).  Therefore, from (2.18) and (2.42), the energy-momentum tensor associated
with the tensor part of the gravitational field is



-17-

(2.43)

( ) ( ) ( )[ ]
t

k k h h h h
µν

µ ν
λκ

λκ
λκ

λκ

π
ϕ

ω ϕ ω ψψ ω ψ
=

− +



 +

+ + + + +















−8

1

2

1

2

2 1 2 1 2

0

0
1 2

�� � �

�� �

Averaging of the Field

Thus far we have incorporated approximations valid for a weak field far from the
source, but have not sacrificed temporal detail.  We could, if we wished, compute the
instantaneous with (2.43) as a basis.  However, such an attempt would bedE d t
extraordinarily complex and would not be useful.  The overall effect on a system, such
as a binary, is better characterized by the average flux of energy away from the system.

Suppose that the (or ) waves have a discrete spectra1 representation.  It is clearhµν ψ
then that the longest periodicity T that can be seen temporally will be proportional to
the inverse of the difference of the closest pair of frequency components in the wave. 
Therefore, it would be appropriate to evaluate the average of over an intervaldE d t
equal to or greater than T.  It turns out that the loss of temporal detail introduced by
such averaging will simplify our final results strikingly.

A large class of problems, of which the binary system is an example, have discrete
spectral representations so that the averaging process just described is applicable. 
Other problems, such as the collision of particles to be considered later, are not periodic
but are represented by continuous spectra.  In these cases the "longest periodicity"
becomes infinitely long and averaging no longer has a practical meaning.  But it is
possible to define the power spectral density associated with the wave in such cases and
we will find that this too will result in a considerable simplification of final results.

The instantaneous flux of energy through a surface of area in the direction isr d2 Ω �x

(2.44)
dE

dt
r d x ti i= 2 0Ω �

and the average flux is

. (2.45)
dE

dt
r d x ti i= 2 0Ω �

Consider, in particular, the average of the first term of (2.43), which involves
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( ) ( )
h h

T
dt h t

d h t

d t

T
λκ

λκ
λκ λκ�� = ′ ′

′
′

=∫
1

0

2

2

. (2.46)( ) ( )
= ′

′
′

− ′
′ ′∫

1 1

0 0T
h t

dh t

d t T
d t

dh

d t

dh

dt

T T
λκ λκ

λκ
λκ

If and its first derivative are reasonably behaved functions, the first term of theh λκ

partial integration above can be made arbitrarily small by letting T be sufficiently large. 
For purposes of averaging then we can drop the first term and set

. (2.47)h h h hλκ
λκ

λκ
λκ

�� � �= −

In exactly the same way we conclude that

. (2.48)ψψ ψ�� �= − 2

These results in (2.43) give

. (2.49)( )t
k k

h hµν
µ ν λκ

λκπ
ϕ ω ω ϕ ψ= − + −

8

1

4
2 10 0

1 2� � �

Finally, it will be useful to re-write in terms of a function defined to bet µν J µν

. (2.50)( ) ( )
J x t d x

T x t x x

x xµν
µνϕ& &

& & &

& &,
,

≡ ′
′ − ′ −

′ −
− ∫4 0

1 3

When this is used for the first term of (2.39), and (2.38) is used in the second, there
results

, (2.51)( ) ( ) ( ) ( )h x t J x t x tµν µν µνϕ η ω ψ& & &
, , ,= + +−2 10

1

and consequently

. (2.52)( ) ( )� � � � � � �h h J J Jλκ
λκ

λκ
λκ

λκ
λκϕ ω ψη ϕ ω ψ= + + + +− −4 1 16 10

1
0

2 2 2
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By contracting (2.50), and comparing with (2.38), we find

, (2.53)( )η ϕ ω ψλκ
λκ

λ
λJ J= = − +−2 3 20

1

and consequently that

. (2.54)( )η ϕ ω ψλκ
λκ

λ
λ� � �J J= = − +−2 3 20

1

This last result may be used to eliminate from (2.52) and (2.49) to give�ψ

, (2.55)( )t
k k

G
J J Jµν

µ ν λκ
λκ

λ
λπ

ω
ω

ω
ω

=
+

+
−

+
+





8

2

3 2

1

2

1

3 2

2
2

� � �

where we have used also (2.16) for .ϕ0

Conservation Law and Moments

Analysis of the radiation in terms of multipoles is a result of one further approximation: 
the expansion of  in a Taylor series about .  That is,J µν ′ = −t t r

( ) ( ) ( )
J x t

r
d x T x t x d x x

T x t

t
µν µν

µν

ϕ
∂

∂
& & & & &

&

, , �
,

= ′ ′ ′ + ⋅ ′ ′
′ ′

′
+




− ∫∫4

1
0

1 3 3

, (2.56)( ) ( )
+ ′ ⋅ ′

′ ′
′

+



∫

1

2
3 2

2

2d x x x
T x t

t
& &

&

��
,∂

∂

µν

where we have used

       and        
& &′ − ≅−x x r1 1

& & &′ − ≅ − ⋅ ′x x r x x�

for .r x>> ′&

Let us define the following moments of the mass-energy distribution:
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, (2.57)( ) ( )M t d x T x t≡ ∫ 3 00& &
,

, (2.58)( ) ( )D t d x x T x tk k≡ ∫ 3 00& &
,

. (2.59)( ) ( )Q t d x x x T x tij i j≡ ∫ 3 00& &
,

The conservation law (2.3) becomes, in the weak field limit,

(2.60)T µν
ν, = 0

and implies the relations [See Appendix A]

(2.61)( ) ( ) ( )d x T x t
t

d x x x T x t Q tjk j k jk3
2

2
3 001

2

1

2
& & & &

, , ��= =∫∫
∂
∂

(2.62)( ) ( ) ( )d x T x t
t

d x x T x t D tk k k3 0 3 00& & & &∫ ∫= =, , �
∂
∂

. (2.63)( ) ( ) ( )∂
∂t

d x x T x t d x T x t Q tk j jk jk3 0 3 1

2∫ ∫= =& & & &
, , ��

We use the expansion (2.56) of to write , , and in terms of the momentsJ µν J 00 J i0 J ij

(2.57) - (2.59).

First, from (2.56) we have

( ) ( ) ( )J x t
r

d x T x t x
t

d x x T x ti
i00

0
1 3 00 3 004

1& & & & &
, , � ,= ′ ′ ′ +

′
′ ′ ′ ′


+− ∫ ∫ϕ

∂
∂

. (2.64)( )+
′

′ ′ ′ ′ ′ +



∫1

2

2

2
3 00

� � ,x x
t

d x x x T x ti j
i j∂

∂
& &

�

From the definitions of the moments and the relations implied by the conservation law,

we have for , out to second moments,J 00
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. (2.65)( ) ( ) ( ) ( )J x t
r

M t x D t x x Q ti
i

i j
ij00

0
14

1 1

2
*

, � � � � ��= ′ + ′ + ′





−ϕ

For we need only two terms of the expansion (2.56) in order to include moments toJ i0

the second.

. (2.66)( ) ( ) ( )J x t
r

d x T x t x
t

d x x T x ti i
k

k i0
0

1 3 0 3 04
1& & & & &

, , � ,= ′ ′ ′ +
′

′ ′ ′ ′





− ∫ ∫ϕ
∂

∂

Relations (2.62) and (2.63) then give

. (2.67)( ) ( ) ( )J x t
r

D t x Q ti i
k

ik0
0

14
1 1

2
&

, � � ��= ′ + ′





−ϕ

And for only one term of (2.56) is required, giving immediatelyJ ij

. (2.68)( ) ( )J x t
r

Q tij ij&
, ��= ′−2

1
0

1ϕ

The conservation law also implies that [See Appendix A]

     and     . (2.69)�M = 0 ��D k = 0

Therefore, from (2.65), (2.67), and (2.68) we have

(2.70)� � � ���J
r

x x Qi j
ij00

0
12

1
= −ϕ

(2.71)� � ���J
r

x Qi
k

ik0
0

12
1

= −ϕ

. (2.72)� ���J
r

Qij ij= −2
1

0
1ϕ

To evaluate (2.55), we require , which may be written� �J Jλκ
λκ
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. (2.73)� � � � � � � �J J J J J J J Ji
i

ij
ij

λκ
λκ = + +00

00
0

02

The signs of and are independent of the raising/lowering of the pair of indices,J 00 J ij

but

. (2.74)J J Ji i
i

0 0
0= = −η ηα β

αβ

When this and (2.70) - (2.72) are used in (2.73) we get

. (2.75)( ) ( )( ) ( )� � � � ��� � ��� � ��� ��� ���J J
r

x x Q x Q x Q Q Qi j
ij

k
ik

j
ij ij

ij
λκ

λκ ϕ= − +





−4
1

20
2

2

2

In completely analogous manner, we find

, (2.76)� � � � �J J J J Ji
i

i
i

λ
λ = + = − +0

0
00

so that from (2.70) - (2.72) we get

, (2.77)( )� � � ��� ���J
r

x x Q Qi j
ij k

k
λ

λ ϕ= − −−2
1

0
1

and finally

. (2.78)( ) ( ) ( ) ( )� � � ��� ��� � � ��� ���J
r

x x Q Q x x Q Qi j
ij k

k i j
ij k

k
λ

λ ϕ
2

0
2

2

2 2
4

1
2= − +





−

When (2.75) and (2.78) are put into (2.55), and (2.16) is used again to eliminate , weϕ0

find

( ) ( )t
k k G

r
x x Qi j

ij
µν

µ ν

π
ω

ω
ω ω

ω
=

+
+

+ +
+

−
8

3 2

2

2 8 7

2 3 22

2

2

2
� � ���

. (2.79)( )( ) ( ) ( )− + +
+
+





 −� ��� � ��� ��� ��� ��� � � ��� ���x Q x Q Q Q Q x x Q Qk

ik
j

ij ij
ij

k
k i j

ij k
k

1

2

1

3 2
2

2ω
ω
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Total Power

We now use (2.79) for  in (2.45) and integrate over all directions in order tot µν

compute the total average flux of energy due to the tensor wave,

. (2.80)
dE

dt
r d x ti i

to tal
(te n sor)

= ∫2 0Ω �

Note that

,[ ] ( )( )[ ] [ ]� � � �x t x k k x xi i i i i i0 0 1= = − − =� � �

which simplifies the evaluation of (2.80).  Integration over all directions is accomplished
readily with the help of

(2.81)d x xi j ijΩ � � =∫
4

3

π
δ

and

. (2.82)( )d x x x xi j l m ij lm il jm im jlΩ � � � �∫ = + +
4

15

π
δ δ δ δ δ δ

The result is:

( )( ) ( )( )dE

d t

G
Q ij

to ta l
(te n so r)

=
+ +

+ + −
60

1

3 2 2
24 76 592 2

ω ω
ω ω ���

(2.83)( )( )− + +8 12 32 2
ω ω ���Q k

k

We have already noted that the Brans-Dicke theory goes over to general relativity when
.  In this limit, (2.83) becomesω → ∞

, (2 .84)( ) ( )dE

dt

G
Q Qij k

k
to ta l
G R

= −
15

3
2 2

��� ���

which is recognized as the result familiar from general relativity (14).  It is customary to
define the traceless tensor
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(2.85)D Q Qij ij ij k
k≡ −3 δ

in terms of which (2.84) becomes

. (2.86)( )dE

dt

G
D ij

to tal
G R

=
45

2
���

Unfortunately, a comparable simplification does not follow if (2.85) is used in the result
for the Brans-Dicke theory (2.83).

Energy-Momentum of the Gravitational Field - Scalar Part

To complete the analysis in the Brans-Dicke theory, we must carry through the
analogous steps for the flux of energy carried by the scalar field.  The weak field
approximation of the tensor  associated with the scalar field is found by applyingT( )ϕ µν

(2.5) and (2.26) to (2.4).  This gives

T k k k k( )
� �ϕ µν µ ν µν ρ

ρω
π

ϕ ψ η ψ= −



 +−

8

1

20
1 2 2

. (2.87)( )+ −
1

8π
ψ η ψµ ν µν ρ

ρk k k k�� ��

The second and fourth terms above drop out in the far field due to (2.32) leaving

. (2.88)( )T
k k

( )
� ��ϕ µν

µ ν

π
ωϕ ψ ψ= +−

8 0
1 2

Recalling that is small, one might be inclined to ignore the first term of (2.88) in favorψ
of the second.  However, consideration of the averaging process which is to be applied,
as for the tensor field, reveals that it is the second, rather than the first, term which is
appropriately ignored.

Consider

.��ψ
ψ ψ

= ′
′

=
′∫

1 12

2
0 0T

dt
d

d t T

d

dt

T T
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If is a reasonably behaved function,  becomes arbitrarily small as T isd dtψ ′ ��ψ
increased.  On the other hand,

�ψ
ψ2

0

2
1

= ′
′





∫T

dt
d

d t

T

approaches a meaningful average as T is increased because of the positive definite
periodic kernel.  Therefore, for purposes of averaging, it is the first term of (2.88) that is
to be retained.

. (2.89)T
k k

( )
�ϕ µν

µ ν

π
ωϕ ψ= −

8 0
1 2

Using (2.54) for , we find that�ψ

. (2.90)( ) ( )T
k k

J( )
�

φ µν
µ ν λ

λπ
ωϕ

ω
=

+8

1

3 20 2

2

Finally, we use (2.78) for and (2.16) for to get( )�J λ
λ

2
ϕ0

( )( ) ( )T
k k G

r
x x Qi j

ij
( ) � � ���
ϕ µν

µ ν

π
ω

ω ω
=

+ +
−

16 3 2 22

2

. (2.91)( ) ( )− +2
2

��� � � ��� ���Q x x Q Qk
k i j

ij k
k

Note that the contribution from the scalar field goes to zero, as it should, as we make
the transition to general relativity by letting go to infinity.ω

When  is substituted for  in (2.45) and then integrated over all directions, weT( )ϕ µν t µν

find, with the help of (2.81) and (2.82), that

. (2.92)( )( ) ( ) ( )dE

dt

G
Q Qij k

k
to ta l

(scala r)

=
+ +

+
10 3 2 2

1

3
2 2ω

ω ω
��� ���

The grand total flux due to both scalar and tensor quadrupole radiation is given by the
sum of (2.83) and (2.92):
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( )( ) ( )( )dE

dt

G
Q ij

to ta l

=
+ +

+ + −
60

1

3 2 2
24 78 592 2

ω ω
ω ω ���

. (2.93)( )( )− + +8 6 32 2
ω ω ���Q k

k

Application to a Binary System

In order to evaluate expressions for the flux such as (2.83), (2.92), or (2.93) it is necessary
to form explicit expressions for

��� ���Q Qij
ij

and

( )���Q k
k

2

for the system under consideration.  For a binary system, we shall assume that in the
first approximation the motion is Keplerian.  Therefore averaging will be over one
orbital period.  We will first compute the averages that apply to a single body of the
pair.  It is then a simple matter of scaling to adapt the results to the system of two
bodies.

For a point mass m, defined by (2.59) is( )Q tij

( ) ( )Q t d x x x T x tij i j≡ =∫ 3 00& &
,

(2.94)( )( ) ( )( ) ( )( )= − − −∫∫∫ d x d x d x m x x x x t x x t x x ti j1 2 3 1 1 2 2 3 3δ δ δ

where is the integration variable and is the position of the mass.  In terms of thex x
specific system PSR 1913+16, we shall define

mass of pulsar,m =
mass of companion, and (2.95)M =

.( )µ =
+

G M

M m

3

2

will be used to account for the fact that may not be small when compared with .µ m M
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Since the orbit is Keplerian and, hence, planar, we can pick the coordinate system so

that is zero.  Then (2.94) reduces tox 3

(for i or j = 3)    (2.96)( )Q tij = 0

(2.97)( ) ( )( ) ( ) ( )( )Q t m x t Q t m x t11 1 2 22 2 2
= =,

. (2.98)( ) ( ) ( ) ( )Q t Q t m x t x t12 21 1 2= =

As is well known, the position in the orbit plane is a transcendental function of the time. 
We shall, therefore, work with the parametric representation of the motion (15)

( ) ( )r a E t
a

E E= − = −1
3

ε
µ

εcos , sin

(2.99)

( ) ( ) ( ) ( )x E a E x E a E1 2 2 1 2
1= − = −cos , sinε ε

where = orbital radius to , = semimajor axis of the orbit of , = eccentricity,r m a m ε
= eccentric anomaly.  Over one orbit,  ranges from 0 to .  Since , rather thanE E 2π E

, will be used to locate the body in its orbit, we must re-write the expression for thet
time-average of a function so that it involves integration on .dE

. (2.100)( )f
T

d t f t
T

≡ ∫
1

0

For a Keplerian orbit has the valueT

. (2.101)T
a

= 2
3

π
µ

From (2.99) and (2.101) we have
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,( )t
T

E E= −
2π

ε sin

(2.102)

.( )dt
T

E dE= −
2

1
π

ε cos

Therefore, if , we may write (2.100) as( ) ( )( )f t g E t=

. (2.103)( ) ( )( )f t g E E dE= −∫
1

2
1

0

2

π
ε

π

cos

Accordingly, we will first express the required contractions of in terms of the���Q ij

eccentric anomaly and will then use (2.103) to compute the time average over one
orbital period.

Note incidentally that in what follows we can raise/lower all space indices without

regard for sign changes because .η δi j i j=

( )���Q k
k

2

From (2.97) and (2.99) we can write

( ) ( )[ ]Q Q Q m x x m rk
k = + = + =1

1
2

2
1 2 2 2 2

or

. (2.104)( ) ( )Q E m a Ek
k = −2 21 ε cos

Using (2.102), we find that all time derivatives are equivalently

. (2.105)( )d

dt

dE

dt

d

dE T
E

d

dE
= = − −2

1 1π
ε cos

We find, therefore, that the derivatives of areQ k
k
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,� sinQ m a
T

Ek
k = 



2

22ε
π

,( )�� cos cosQ m a
T

E Ek
k = 



 − −2

2
12

2
1ε

π
ε

( )
���

sin

cos
Q m a

T

E

E
k

k = − 



 −

=2
2

1
2

3

3ε
π

ε

, (2.106)( )= −
−

2
1

3 2

5 2 3m
a

E

E
ε

µ
ε
sin

cos

from which

. (2.107)( ) ( )
���

sin

cos
Q m

a

E

E
k

k
2 2 2

3

5

2

64
1

=
−

ε
µ

ε

From (2.103) we find that

(2.108)( ) ( )
���

sin

cos
Q m

a

E

E
dEk

k
2 2 2

3

5

2

5
0

4

1
=

−∫π
ε

µ
ε

π

where we have used also the symmetry of the integrand over the range of integration.

In Appendix B we show that

, (2.109)( ) ( )
sin

cos

2

5

2

2 7 2
0 1 8

4

1

E

E
dE

−
=

+
−∫ ε

π ε
ε

π

so that we have finally from (2.108) that

. (2.110)( ) ( )
( )

���Q m
a

k
k

2 2
3

5

2 2

2 7 2

1

2

4

1
=

+
−

µ ε ε
ε
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��� ���Q Qij
ij

From the properties (2.96) - (2.98) of we can writeQ ij

. (2.111)( ) ( ) ( )��� ��� ��� ��� ���Q Q Q Q Qij
ij = + +11 2 12 2 22 2

2

We take each of the terms in order.  First, from (2.97) and (2.99) we have that

. (2.112)( ) ( )Q E m a E11 2 2= −cos ε

Using (2.105) to compute the various derivatives we find

,
( )

�
sin cos

cos
Q m a

T

E E

E
11 22

2

1
= − 





−
−

π ε
ε

,( ) ( )�� cos cos cos cosQ m a
T

E E E E11 2

2
3 2 3 22

2
1 2 1= − 



 − − − + −−π

ε ε ε ε

and

( ) (��� cos sin cosQ m a
T

E E E11 2

3
5 22

2
1= − 



 − +−π

ε ε

. (2.113))+ − − +2 4 3 42 3ε ε εcos cosE E

Likewise, from (2.97) and (2.99) we have

, (2.114)( ) ( )Q E m a E22 2 2 21= − ε sin

which leads to the derivatives

,( )( )� cos sin cosQ m a
T

E E E22 2 2 12
2

1 1= 



 − − −π

ε ε

,
( )( ) ( )�� cos cos sin cosQ m a

T
E E E E22 2

2
2 3 2 2 32

2
1 1= 



 − − − −−π

ε ε ε
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.( )( ) ( )��� cos sin cos cosQ m a
T

E E E E22 2

3

2 5 22
2

1 1 3 4= 



 − − − +−π

ε ε ε ε

(2.115)

And finally, from (2.98) and (2.99) we have

, (2.116)( ) ( )Q Q m a E E12 21 2 2 1 2
1= = − −ε εsin cos

which leads to the derivatives

,( ) ( ) ( )� cos cos cosQ m a
T

E E E12 2 2 1 2 1 22
1 1 2 1= 



 − − − −−π

ε ε ε

,( ) ( ) ( )�� cos sin cos cosQ m a
T

E E E E12 2

2

2 1 2 3 22
1 1 2 4 2= 



 − − − +−π

ε ε ε ε

( ) ( ) (��� cos cosQ m a
T

E E12 2

3

2 1 2 5 2 22
2

1 1= 



 − − +−π

ε ε ε

. (2.117))+ + − − +3 3 4 23 2 2ε ε εcos cos cosE E E

When results (2.113), (2.115), and (2.117), together with (2.101) for , are used inT
(2.111), one finds after considerable algebra that

. (2.118)( ) ( )[ ]��� ��� cos sinQ Q m
a

E Eij
ij = − − +−4 1 8 12

3

5
6 2 2 2µ

ε ε ε

On substitution of (2.118) into (2.103) for the average there results

. (2.119)
( )

( )
��� ���

sin

cos
Q Q m

a

E

E
dEij

ij =
− +

−∫
4 8 1

1
2

3

5

2 2 2

5
0π

µ ε ε
ε

π
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Note that the second term of the above is identically (2.108), which has the value given
by (2.110).  The first term is evaluated using5

( ) ( )
dE

E
P

1 1

1

1
5 2 5 2

0
4 2−

=
− −







∫ ε

π
ε ε

π

cos

,( ) ( )P x x x4
4 21

8
35 30 3= − +

which leads to

. (2.120)( ) ( )
dE

E1 8

3 24 8

1
5

4 2

2 9 2
0 −

=
+ +
−∫ ε

π ε ε
ε

π

cos

Consequently, the first term of (2.119) is

,( )4
3 24 8

1
2

3

5

4 2

2 7 2m
a

µ ε ε
ε

+ +
−

and the complete evaluation of (2.119) using also (2.110) is

. (2.121)( )
��� ���Q Q m

a
ij

ij =
+ +
−

1

2

25 196 64

1
2

3

5

4 2

2 7 2

µ ε ε
ε

Scaling

Results (2.110) and (2.121) apply to the motion of one body in a Keplerian orbit aboutm
a second body .  If used as is in the radiation formula (2.93) they will account for theM
energy loss due to the motion of , but not of .  The overall loss rate due to them M
motion of both bodies is found from a simple scaling argument.

Let subscript 1 denote the pulsar and 2 the companion and, as above, let them M
origin of coordinates be at the barycenter.  This condition is defined by
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m x M xi i
1 2 0+ =

or,

. (2.122)x
m

M
xi i

2 1= −

The overall moment for the system consisting of both and isQ ij m M

, (2.123)( )Q m x x M x x
m

M
m M x xij i j i j i j= + = +1 1 2 2 1 1

where we have used (2.122) to express the moment in terms of the motion of .  Thism
differs from (2.97) and (2.98) only by the factor of .  Therefore, results( )m M M+
(2.110) and (2.121) can be made to apply to the system of two bodies of masses andm

by simply scaling by the factor .  When this is done, and theM ( )( )m M M+
2

definition (2.95) of is introduced, we have for the binary systemµ

(2.124)( ) ( )
( )
( )

���Q
G m M

a m M
k

k
2

3 2 7

5 4

2 2

2 7 22

4

1
=

+
+
−

ε ε
ε

and,

. (2.125)( ) ( )
��� ���Q Q

G m M

a m M
ij

ij =
+

+ +
−

3 2 7

5 4

4 2

2 7 22

25 196 64

1

ε ε
ε

For the special case of general relativity, these two results in (2.84) give

. (2.126)( ) ( )
dE

dt

G m M

a m Mto ta l
G R

=
+

+ +

−













32

5

1

1

4 2 7

5 4

2 4

2 7 2

73
24

37
96ε ε

ε
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Effect on Orbital Period

One does not measure directly but rather the change of orbital period induceddE d t T

by .  Therefore, in order to apply our results to observation we need as a finaldE d t
step to relate to .dE d t dT d t

The semimajor axis of the relative orbit is

′ =
+

a
m M

M
a

where it is to be recalled that is the semimajor axis of the pulsar orbit.  The totala
energy of a Keplerian binary system isE

(2.127)( )E
G m M

a

G m M

a m M
= −

′
= −

+2 2

2

from which

. (2.128)( )a
G m M

m M
E= −

+
−

2
1

2

The orbital period can be related to the energy by combining (2.101), (2.95) forT E
and (2.128).  The result isµ

. (2.129)( ) ( )T G
m M

m M
E=

+






 − −π

3 3 1 2

3 2

2

By taking the time derivative and afterward re-introducing (2.127) to restore the
parameter , we find that a

. (2.130)
( )dT

dt
T

m M

m

a

G M

dE

dt
= =

+
� 6

2 5

3 7π
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Numerical Results for PSR 1913+16

We now use the published numerical values for the specific example of PSR 1913+16 to
compute values for (2.124) and (2.125).  These will be used in (2.93) to evaluate

from which can be estimated using (2.130).dE dt dT d t

We take the following approximate values from Taylor et al. (1) for PSR 1913+16:

1.39  2.765 x 1033 gm = M s u n =
1.44  2.864 x 1033 gM = M s u n =

0.81sin i =
 2.3424 light-sec = 7.0225 x 1010 cma isin =

 8.67 x 1010 cma =
 0.617155ε =

Also we use:
 6.673 x 10-8 dyn cm2 g-2 G =

 2.998 x 1010 cm sec-1c =

Note that for dimensional reasons we have to restore a factor of to the denominatorc5

of (2.93).dE d t

First, we find from (2.130) that for PSR 1913+16

 2.2061 x 10-44 . (2.131)�T =
se c

g  cm

3

2

dE

dt
From (2.124) and (2.125) we get

 3.26 x 1090 (2.132)( )���Q k
k

2
=

g  cm
se c

2

3









2

and

 2.78 x 1092 . (2.133)��� ���Q Qij
ij =

g  cm
se c

2

3









2

The average total radiation rate for the binary system in the Brans-Dicke theory is found
from (2.93) and the above to be
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Figure 1.  Orbital decay rate for PSR 1913+16 in the Brans-Dicke theory.

. (2.134)( )( )
dE

dt
=

+ +
+ +

3 .0 5  x  1 0 9 .9 4  x  1 0 7 .5 3  x  1 0 g  cm
se c

32 3 2 3 2 2

3

ω ω
ω ω

2

3 2 2

When this is used in (2.131) for the effect on the orbital period, we find

, (2.135)( )( )
�T =

+ +
+

6 .7 3  x  1 0 2 .1 9  x  1 0 1 .6 6  x  1 0
3 + 2

se c
se c

-12 -11 -11ω ω
ω ω

2

2

where a positive result indicates a decreasing orbital period.  In the limit , thisω → ∞
goes over to the general relativistic prediction

 3.36 x 10-12 . (Gen. Rel.) (2.136)�T =
se c
se c

Figure l is a plot of from (2.135) for PSR 1913+16 as a function of the free parameter�T

.  Also indicated are the observational limits on set by Taylor et al., and the limitingω �T
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general relativistic value (2.136).  It is clear that the prediction for all positive values of
is comfortably within the observational limits.  Consequently, it is not possible toω

validate the Brans-Dicke theory or to establish bounds on from current observationsω
of the orbital decay rate of PSR 1913+16 under the assumption of gravitational radiation
in the quadrupole mode.

3.0  Gravitational Radiation from Colliding Bodies in Brans-Dicke Theory

General Results

We turn now to the problem of computing the gravitational radiation associated with a
system of bodies in collision in the weak field limit of the Brans-Dicke theory.  The
results will be useful as a basis for studying other systems such as a hot gas in thermal
equilibrium.

Spectral Representation of the Fields

Since the motion of the system is not periodic, the averaging technique that we applied
in the previous section cannot be utilized.  We assume, as before, that very far from the
source and are functions of the scalar ψ hµν ′t

(3.1)′ = − =t t r k xλ
λ

(3.2)k k k xi i0
0 1= − = + = −, �

(these as before).            (3.3)�x
x

r
i

i

≡

We assume further that in the far field can be represented by a continuous spectralhµν

distribution  such thateµν

(3.4)( ) ( ) ( )h x t d e x i k xµν µν λ
λϖ ϖ ϖ& &

, , exp=
−∞

+∞

∫
which implies that
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. (3.5)( ) ( ) ( )e x d t h x t i tµν µνϖ
π

ϖ& &
, , exp= ′ ′ − ′

−∞

+∞

∫
1

2

We use the symbol  for the frequency in order to distinguish it from the freeϖ
parameter of the Brans-Dicke theory, and the spatial angular measure .ω dΩ

The linearity of the field equations, (2.9) and (2.14), in the weak field limit assures us
that we can represent the scalar field also by a continuous distribution of the same form
as for . That ishµν

(3.6)( ) ( ) ( )ψ ϖ ϖ ϖ λ
λ& &

x t d a x i k x, , exp=
−∞

+∞

∫
and

. (3.7)( ) ( ) ( )a x d t x t i t
& &

, , expϖ
π

ψ ϖ= ′ ′ − ′
−∞

+∞

∫1

2

Though now in the form of integrals over continuous distributions, and still haveψ hµν

the functional dependency on  assumed in expressions (2.43) and (2.88) for and′t t µν

.  Keeping (3.1) in mind, we can immediately express both tensors using (3.4) andT( )ϕ µν

(3.6).  We find from (2.43) that

( )[ ]{ ( ) ( )t
k k

d d e x e xµν
µ ν λκ

λκπ
ϖ ϖ ϕ ϖ ϖϖ ϖ ϖ= ′ ′ + ′ −∫∫

−∞

+∞

8
1
2 0

2 1
2

& &
, ,

( ) ( )( ) ( )[ ] ( ) ( )}− + + ′ + + ′ ′ ×−2 1 2 1 20
1 2ω ϕ ω ϖ ω ϖϖ ϖ ϖa x a x

& &
, ,

(3.8)( )( )× + ′exp i k xϖ ϖ λ
λ

and from (2.88) that

( ) ( ) ( )( )T
k k

d d a x a x i k x( ) , , expϕ µν
µ ν

λ
λ

π
ω ϕ ϖ ϖ ϖ ϖ ϖ ϖ= −




 ′ ′ + ′ +−

−∞

+∞

∫∫8 0
1 & &
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. (3.9)( ) ( )+





−∞

+∞

∫ d a x i k xϖ ϖ ϖ ϖ λ
λ2 &

, exp

Definition of the 2-sided Power Spectral Density Function

Because the distributions and are continuous in , there are( )e xµν ϖ&
, ( )a x

*
,ϖ ϖ

components of each that are arbitrarily close together in frequency.  As a consequence,
the longest periodicity, which determines the minimum averaging interval , tends toT
infinity.  Therefore, the averaging process that we used previously no longer has a
practical meaning, but it is still defined in the mathematical sense.

If we were to carry out the (mathematical) averaging process, we would have to
integrate the instantaneous over all time giving , the total energy emitted bydE d t E

the system.  Since and are now related to and by transform pairψ hµν a eµν

relationships, (3.6), (3.7), and (3.4), (3.5), we should be able to define a new function
that, when integrated over all frequency, also gives the total energy . That is,( )P ϖ E

. (3.10)( )E d P=
−∞

+∞

∫ ϖ ϖ

Of the infinity of functions that satisfy (3.10), the most natural choice follows, not( )P ϖ
surprisingly, from an attempt to integrate over all time as would be required bydE d t
the averaging process.

Consider first (2.44) for in the tensor field.  Integration over all time gives, for adE d t
particular direction ,�x

. (3.11)( )dE r d x d t t ti i= ′ ′
−∞

+∞

∫2 0Ω �

( appears on the left side because we have not yet integrated over all directions .dE �x
Otherwise should be considered on the same footing as in (3.10) for purposes ofdE E
defining the power spectral density).  Clearly, integration of over all time is ant µν

essential step in our computation of the total energy radiated by a system.
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Recalling (3.1), we see from (3.8) that integration of over all time involvest µν

. (3.12)( )( ) ( )d t i t′ + ′ ′ = + ′
−∞

+∞

∫ exp ϖ ϖ πδ ϖ ϖ2

Therefore, one of the frequency integrals from (3.8), say that on , can be performed′ϖ
immediately, with the result that

(3.13)′ = −ϖ ϖ

in the remaining integral.  Inspection of (3.5) and (3.7) reveals thatϖ

(3.14)( ) ( )e x e xµν µνϖ ϖ& &
, ,− = ∗

and

, (3.15)( ) ( )a x a x
& &

, ,− = ∗ϖ ϖ

assuming and to be real fields, and "star" denotes complex conjugate.  We have,hµν ψ
consequently, that

( )dt t t′ ′ =
−∞

+∞

∫ µν

. (3.16)( ) ( ) ( ) ( )k k
d e x e x a x

µ ν λκ
λκϖ ϕ ϖ ϖ ω ω ϕ ϖ ϖ

4

1

4
2 10 0

1 2 2& & &
, , ,∗ −

−∞

+∞

− +



∫

An analogous argument holds for the scalar field with  substituted for inT( )ϕ µν t µν

(3.11),  but there is a minor difference introduced by the fact that the second term of
(3.9) involves only a single integral.  Integration of  over all time involves, fromT( )ϕ µν

the second term of (3.9),

( ) ( )d a x d t i tϖ ϖ ϖ ϖ2 &
, exp

−∞

+∞

−∞

+∞

∫ ∫ ′ ′ =

. (3.17)( ) ( )= =
−∞

+∞

∫2 02π ϖ ϖ ϖ δ ϖd a x
&

,
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It is noteworthy that in the averaging process used in the previous section it was also
this term that dropped out.  We have finally from (3.9) that

. (3.18)( ) ( )d t T t
k k

d a x′ ′ =
−∞

+∞
−

−∞

+∞

∫ ∫( ) ,ϕ µν
µ ν ω ϕ ϖ ϖ ϖ
4 0

1 2 2&

With (3.16) or (3.18) substituted into (3.11) for the respective field, we see that we now
have expressions for the total energy that are of the form of (3.10).  Using to( )dP ϖ
indicate that we have not yet integrated over all directions, we identify by comparison
with (3.10) that for the tensor field

( ) ( ) ( ) ( ) ( )dP
r d

e x e x a xϖ ϖ ϕ ϖ ϖ ω ω ϕ ϖλκ
λκte n sor = − +





∗ −
2

2
0 0

1 2

4

1

4
2 1

Ω & & &
, , ,

(3.19)
and for the scalar field,

. (3.20)( ) ( )dP
r d

a xϖ ω ϕ ϖ ϖsca la r = −
2

0
1 2 2

4

Ω &
,

We have used above also the fact that

.( )( )� � �x k k x xi i i i0 1 1= − − =

Relations (3.19) and (3.20) are the 2-sided power spectral density functions associated
with the tensor and scalar waves for radiation in the direction .  They are "2-sided"�x
because they conform to in (3.10), which involves integration over both positive( )P ϖ
and negative frequencies.

In the previous section, it proved advantageous to re-express the averaged

energy-momentum tensors in terms of the common function defined by( )J x tµν
&

,
(2.50).  By analogy, it will be useful here to re-express (3.19) and (3.20) in terms of the

spectral representation of , .  That is, we letJ µν ( )j xµν ϖ&
,

, (3.21)( ) ( ) ( )J x t d j x i k xµν µν λ
λϖ ϖ ϖ& &

, , exp=
−∞

+∞

∫
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which implies that

. (3.22)( ) ( ) ( )j x d t J x t i tµν µνϖ
π

ϖ& &
, , exp= ′ ′ − ′

−∞

+∞

∫
1

2

It follows from (2.51), and the representations (3.4), (3.6), and (3.21), that

, (3.23)( ) ( ) ( ) ( )e x j x a xµν µν µνϖ ϖ ϕ η ω ϖ& & &
, , ,= + +−2 10

1

and from (2.53) that

. (3..24)( ) ( ) ( )j x a xλ
λ ϖ ϕ ω ϖ& &

, ,= − +−2 3 20
1

From (3.23), we have

. (3.25)( )( ) ( )e e j j j a j a aλκ
λκ

λκ
λκ

λ
λ

λ
λϕ ω ϕ ω∗ ∗ − ∗ ∗ −= + + + + +2 1 16 10

1
0

2 2 2

From (3.24), we find that

, (3.26)( )j a j a aλ
λ

λ
λ ϕ ω∗ ∗ −+ = − +4 3 20

1 2

so that (3.25) reduces to

. (3.27)( )e e j j aλκ
λκ

λκ
λκ ϕ ω∗ ∗ −= − +8 10

2 2

From (3.24), we have also that

. (3.28)( )a
j2

2

0
2 24 3 2

=
+−

λ
λ

ϕ ω

The last two results in (3.19) and (3.20) give us

( ) ( ) ( ) ( )dP
r d

j x j x j xϖ ϕ ϖ ϖ ϖ
ω
ω

ϖλκ
λκ

λ
λten so r = −

+
+















∗

2

0
2

2
2

8
1
2

1
3 2

Ω & & &
, , ,

(3.29)
and,
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. (3.30)( ) ( ) ( )dP
r d

j xϖ ϕ
ω

ω
ϖ ϖλ

λsca lar =
+

2

0 2
2 2

16 3 2

Ω &
,

Spectral Representation of the Motion

Since we have expressed the fields and the flux in the spectral representation, it is
appropriate that we do so also for the source .  Accordingly, we letTµν

. (3.31)( ) ( ) ( )T x t d T x i tµν µνϖ ϖ ϖ& &
,

~
, exp=

−∞

+∞

∫

defined by (2.50) becomesJ µν

( ) ( ) ( )( )J x t
d x

x x
d T x i t x xµν µνϕ ϖ ϖ ϖ&

&

& &
& & &

,
~

, exp=
′

′ −
′ − ′ − ≅−

−∞

+∞

∫ ∫4 0
1

3

, (3.32)( ) ( ) ( )( )≅ ′ ′ ⋅ ′








 −

−

−∞

+∞

∫∫ d
r

d x T x i x x i t rϖ
ϕ

ϖ ϖ ϖµν
4 0

1
3 & & &~

, exp � exp

where we have exchanged the order of the integrations and have used the
approximations

      and      
& &′ − ≅−x x r1 1

* & &′ − ≅ − ⋅ ′x x r x x�

for .  By comparing (3.32) with (3.21), and recalling that , we see thatr x>> ′& ′ =t k xλ
λ

(3.33)( ) ( )j x
r

T xµν µνϖ
ϕ

ϖ&
, � �,=

−4 0
1

where:

. (3.34)( ) ( ) ( )� �,
~

, exp �T x d x T x i x xµν µνϖ ϖ ϖ≡ ′ ′ ⋅ ′∫ 3& & &

Using (3.33), we can express (3.29) and (3.30) in the far field as
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( ) ( ) ( ) ( )dP d T x T x T xϖ ϕ ϖ ϖ ϖ
ω
ω

ϖλκ
λκ

λ
λten so r = −

+
+















− ∗2

1
2

1
3 20

1 2
2

2
Ω � �, � �, � �,

(3.35)
and,

. (3.36)( ) ( ) ( )dP d T xϖ ϕ
ω

ω
ϖ ϖλ

λsca la r =
+

−Ω 0
1

2
2 2

3 2
� �,

Application to a System of Colliding Particles

The results above apply generally to any problem in which the motion is aperiodic.  To

apply the foregoing to a specific problem, we need a functional form for .  For( )~
,T xµν ϖ&

the case of a system of colliding particles, we can find this function without formally
utilizing the inverse transform associated with (3.31).

Consider a system of point particles with 4-momenta  that collide at the origin atPn
µ

.  (  identifies the particle).  Assume that the particles are conserved and thatt = 0 n

after the collision they have momenta .  The energy-momentum tensor of the′Pn
µ

system is

( ) ( ) ( ) ( ) ( )T x t
P P

E
x v t t

P P

E
x v t tn n

nn
n

n n

nn
nµν

µ ν µ ν

δ θ δ θ& & & & &
, = − − +

′ ′
′

− ′ +∑ ∑3 3

(3.37)
where is the step-function having the value( )θ t

(3.38)
( )
( )

θ
θ

t

t

t

t

=
=





>
<

0

1

0

0

( )

( )

and integral representation

. (3.39)( ) ( ) ( )
θ

π
ϖ

ϖ
ϖ ε π

ϖ
ϖ

ϖ ε
t

i
d

i t

i i
d

i t

i
=

−
=

− −
+−∞

+∞

−∞

+∞

∫ ∫
1

2
1

2

exp exp

where .  The 3-dimensional delta-function has the integral representationε = +0
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. (3.40)( )
( ) ( )δ

π
3

3
31

2
& & & &
x d q i q x= ⋅∫ exp

 is the velocity of the n-th particle. , the total relativistic energy of the n-th
&
vn E n

particle, is defined through

      and      . (3.41)P En n
0 =

& &
P E vn n n=

If we substitute the integral representations (3.39) and (3.40) into (3.37) we get 

( ) ( )
( )( )

T x t d
i

P P

E
d q

iq x v t

i
n n

n

n

n

µν
µ ν

ϖ
π ϖ ε

& &
& & &

,
exp

= −
⋅ −
+







+∫∑∫
−∞

+∞ 1

2 4
3

. (3.42)
( )( ) ( )+

′ ′
′

⋅ − ′
−







∑ ∫P P

E
d q

iq x v t

i
i tn n

nn

n
µ ν

ϖ ε
ϖ3 &

& & &
exp

exp

In the first integral in brackets above, let us make the change of variable ′ = − ⋅ϖ ϖ & &
q vn

and in the second .  When this is done, and the prime subsequently′ = − ⋅ ′ϖ ϖ & &
q vn

dropped from , there results′ϖ

( ) ( )
( )

T x t d
i

P P

E
d q

iq x

q v i
n n

nn n

µν
µ ν

ϖ
π ϖ ε

& &
& &

& &,
exp

= −





⋅
+ ⋅ +

+
−∞

+∞

∫ ∑ ∫1

2 4
3

. ( 3.43 )
( ) ( )+

′ ′
′

⋅
+ ⋅ ′ −





∫∑ P P

E
d q

iq x

q v i
i tn n

n nn

µ ν

ϖ ε
ϖ3 &

& &

& &
exp

exp

Comparison with (3.31) shows immediately that

( ) ( )
( )~

,
exp

T x
i

P P

E
d q

iq x

q v i
n n

nn n

µν
µ ν

ϖ
π ϖ ε

& &

& &

& &= −





⋅
+ ⋅ +

+∑ ∫1

2 4
3



-46-

. (3.44)
( )

+
′ ′

′
⋅

+ ⋅ ′ −






∑ ∫
P P

E
d q

iq x

q v i
n n

nn n

µ ν

ϖ ε
3 &

& &

& &
exp

If we now apply (3.34) to (3.44) in order to evaluate ,we see that there arises�Tµν

. (3.45)( )( ) ( ) ( )d x i q x x q x3 3 32
& & & &′ + ⋅ ′ = +

−∞

+∞

∫ exp � �ϖ π δ ϖ

Consequently, the integrations on from (3.44) can be carried out with the effect that
&
q

.  Thus (3.34) becomes
&
q x= −ϖ �

( ) ( )
� �,

�
T x

i

P P

E x v i
n n

nn n

µν
µ ν

ϖ
π ϖ ε

= −



 − ⋅ +

+∑1
2

1

1
&

. (3.46)( )+
′ ′

′ − ⋅ ′ −







∑ P P

E x v i
n n

nn n

µ ν

ϖ ε
1

1 �
&

Recall that is a unit vector and, with , for a massive particle so that�x c = 1
&
vn < 1

 in the denominators above can never be zero.  We may, therefore, now drop1 − ⋅�x vn

&

the .± iε

To ease the notation, we recognize that

(3.47)( ) ( )E x v P k P k P kn n n n
i

i nϖ ϖ ϖ µ
µ1 0

0− ⋅ = + =�
&

using (3.2) and (3.41).  As a further help, let us adopt the convention that runs overN
particles in both the initial and final states and that

(3.48)
η
η

N

N

N

N

= −
= +





1

1

 co rre sp o n d in g  to  in itia l s ta te .
 co rre sp o n d in g  to  fin a l s ta te .



-47-

Then may be very compactly written as�T µν

. (3.49)( )� �,T x
i

P P

P k
N N N

NN

µν
µ ν

λ
λ

ϖ
π

η
ϖ

= ∑1

2

In order to evaluate (3.35) and (3.36), we require also the trace of .  From the�T µν

numerator of (3.49), this involves

, (3.50)P P mN N N
λ

λ = − 2

where is the rest mass of the colliding particle.  Therefore,mN N - th

. (3.51)( )� �,T x
i

m

P k
N N

NN

λ
λ λ

λ
ϖ

π
η

ϖ
= − ∑1

2

2

Using (3.49) and (3.51) in (3.35) and (3.36), we find that

( ) ( )
( ) ( )( )

( )dP

d

G

P k P k

P P
N M

N MN M

N Mϖ ω
π ω

η η
λ

λ
λ

λ

λ
λ

Ω

ten so r

=
+

+







−∑3 2
4 2 22

2

,

(3.52)−
+
+












1

3 2

2
2 2ω

ω
m mN M

and,

, (3.53)
( )

( )( ) ( )( )
dP

d

G m m

P k P k
N M N M

N MN M

ϖ
π

ω
ω ω

η η
λ

λ
λ

λΩ

sca lar

=
+ + ∑8 2 3 22

2 2

,

where we have used also (2.16) for .  Note that both of the above are independent ofϕ0

frequency .  This is because we have modeled the collision as being instantaneous. ϖ
Note also that the scalar contribution (3.53) goes to zero as the free parameter of theω
Brans-Dicke theory is allowed to approach infinity, in which case the theory goes over
to general relativity.
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Total Power Spectral Density

We are of course interested also in the spectrum of the radiation associated with
integration over all directions .  To put (3.52) and (3.53) into a convenient form for�x
integration on , we introduce the relative speed of the particles and ,dΩ N M

(3.54)( )β
λ

λ
N M

N M

N M

m m

P P
≡ −











1

2 2

2

1 2

in terms of which

. (3.55)( ) ( )m m P PN M N M N M
2 2 2 21= −λ

λ β

When this is introduced into (3.52) and (3.53), we have

( )
( ) ( )dP

d

G
N M

N M
N MΩ

te n sor

=
+

+
−

+
+





 −









 ×∑3 2

4 2

1

2

1

3 2
12

2
2ω

π ω
η η

ω
ω

β
,

(3.56)
( )

( )( )×
P P

P k P k
N M

N M

λ
λ

λ
λ

λ
λ

2

and,

( )( ) ( )dP

d

G
N M N M

N MΩ

sca lar

=
+ +

− ×∑
8 2 3 2

12
2

π
ω

ω ω
η η β

,

. (3.57)
( )

( )( )×
P P

P k P k
N M

N M

λ
λ

λ
λ

λ
λ

2

Thus, in this form, the integrations of the tensor and the scalar components over
each involve a common integral which is found to be [See Appendix C]dΩ

. (3.58)
( )

( )( ) ( )d
P P

P k P k

m mN M

N M

N M

N M N M

N M

N M

Ω
λ

λ
λ

λ
λ

λ

π

β β

β
β

2

2 1 2

2

1

1

1∫ =
−

−
+







ln

It follows from (3.56) and (3.57) that
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( ) ( )
( )

( )
( )P

G
m mN M N M

N M

N M

N M N M

ϖ
ω

π ω
η η

ω
ω

β

β β
te n s o r =

+
+

−
+
+





 −

−



















×∑3 2

2 2

1
2

1
3 2

1

1

2
2

2 1 2
,

(3.59)×
−
+







ln

1

1

β
β

N M

N M

and,

( ) ( )( )
( )

P
G

m mN M N M
N M

N MN M

ϖ
π

ω
ω ω

η η
β
β

sca lar =
+ +

−
×∑4 2 3 2

1 2 1 2

,

. (3.60)×
−
+







ln

1

1

β
β

N M

N M

The grand total 2-sided power spectral density for a system of colliding particles in the
Brans-Dicke theory is, from the sum of (3.59) and (3.60)

( ) ( )( )P
G

m mN M N M
N M

ϖ
π ω ω

η ηto ta l =
+ +

×∑4

1

2 3 2 ,

. (3.61 )
( )( ) ( )

( )×
+ + + + +

−













−
+









2 7 1 2 3 2

1

1

1

2 2

2 1 2

ω ω ω ω β

β β

β
β

N M

N M N M

N M

N M

ln

It is to be noted that the multipole expansion of the motion has not been introduced into
either the general results or the specific application of a system of colliding particles.
This is because it has been assumed that the motion has a known spectral representation
(3.31).  In the case of the colliding particles, it proved possible to find the exact spectral
representation so that our results are good to all multipole orders.
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4.0  Quadrupole Gravitational Radiation in the Rosen Theory

We would like to investigate quadrupole gravitational radiation in the bi-metric theory
of Rosen (4,5) both in general terms and as applied to the specific problems already
treated in the Brans-Dicke theory: a binary system, PSR 1913+16 in particular, and a
system of colliding particles.

Field Equations

Rosen's theory is characterized by two metric tensors: that describes purelygµν

gravitational effects, as in general relativity, and  that accounts for inertial effectsγ µν

independent of gravity.  The field equations are, from (5),6

, (4.1)N g N G Tµν µν
λ

λ µνπκ− = −
1

2
8

where

(4.2)N g g g gµν µν αα
λρ

µλ α νρ α= −
1
2

1
2| | |

(4.3)( )κ γ≡ g
1 2

,                 . (4.4)( )g ≡ − d e t. g µν ( )γ γ µν≡ − det.

A bar under an index indicates that it is to be raised/lowered with the metric.  Aγ
vertical bar | indicates that the indices to the right represent covariant derivatives with
respect to  6 that is, in which the affine connection is formed from .γ µν γ µν

The conservation law is, as in general relativity and the Brans-Dicke theory,

, (4.5)T µν
ν; = 0
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where semicolon represents covariant differentiation with respect to .gµν

We will assume that there are no inertial forces so that we are free to take

. (4.6)( )γ ηµν µν= = −d ia g . 1 1 1 1, , ,

Consequently, from (4.3) and (4.4) we have

(4.7)( )γ ηµν= − =det. 1

and

. (4.8)κ = g 1 2

A further consequence of (4.6) is that the affine connection formed from  is zero soγ µν

that all | symbols go over to ordinary partial derivatives.  Therefore, the field equations
(4.1) and (4.2) go over to

(4.9)N g N g G Tµν µν
λ

λ µνπ− = −
1

2
8 1 2

and

. (4.10)N g g g gµν µν αα
λρ

µλ α νρ α= −
1

2

1

2, , ,

Indices with a bar under them are, of course, now raised/lowered with the help of .ηµν

It will be helpful to have a compact expression for the trace of .  From (4.10) weN µν

have

. (4.11)( )N g N g g g g g gλ
λ

λτ
λτ

λτ
λτ αα

λτ σρ
λσ α τρ α= = −

1
2 , , ,

Since, by definition,

, (4.12)g gσρ
τρ

σ
τδ=

it follows that

. (4.13)g g g gσρ
τρ α

σρ
α τρ, ,= −

Therefore, the second term of (4.11) can be written



7  In (4) and (5), Rosen uses to denote the gravitational energy-momentumt µν

tensor density. 
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(4.14)− = + =g g g g g g g g g gλτ σρ
λσ α τρ α

λτ
τρ

σρ
α λσ α

λσ
α λσ α, , , , , ,

where, in the last step, we have used (4.12) and the symmetry of with respect togµν

interchange of indices.  When (4.14) is used in (4.11), we find

( )N g g g gλ
λ

λσ
λσ αα

λσ
α λσ α= +

1

2 , , ,

or,

. (4.15)( )N g gλ
λ

λσ
λσ α α

=
1

2 , ,

Let us define

, (4.16)A g gα
λσ

λσ α≡ ,

so that we can write the trace of asN µν

. (4.17)N Aλ
λ α α=

1

2 ,

Gravitational Energy-Momentum Tensor

The gravitational energy-momentum tensor  in the Rosen theory7 is, witht µν

,γ ηµν µν=

, (4.18)16
1

2

1

4
1 2π ηµν

λρ στ
λσ µ ρτ ν µ ν µνG g t g g g g A A Lg= − −, ,

where is defined by (4.16), and is defined to beAµ L g

. (4.19)L g g g g A Ag = −
1
4

1
8

λρ στ
λσ α ρτ α α α, ,
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Weak Field Approximation

We go over to the weak field approximation by considering, as usual,

, (4.20)g h hµν µν µν µν µνγ η= + = +

where is small.  (4.12) implies thathµν

. (4.21)g hµν µν µνη= −

In the limit of very small , covariant derivatives with respect to  go over tohµν gµν

ordinary partial derivatives because of the rightmost expression in (4.20).  Therefore, in
the weak field limit, all derivatives become partial derivatives and all indices are
raised/lowered with .ηµν

The first, and most obvious, consequence is that the conservation law (4.5) becomes

. (4.22)T µν
ν, = 0

When (4.20) and (4.21) are substituted into (4.16) and the lowest order term kept, we
find that in the weak field limit

. (4.23)A h hα
λσ

λσ α
λ

λ αη= =, ,

Similarly, when (4.20) and (4.21) are used in the field equations (4.9) and (4.10), and

(4.17) and (4.23) are used for , we find to lowest order in N λ
λ hµν

1

2

1

4
8h h G Tµν αα µν

λ
λ αα µνη π, ,− = −

or,

. (4.24)*
2 1

2
16h h G Tµν µν

λ
λ µνη π−



 = −

Attention is drawn to the fact that in the weak field limit
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(4.25)( )g1 2 1= − =d e t. ηµν

so that no longer appears next to the matter tensor on the right hand side of theg 1 2 Tµν

field equation.  In the Introduction we stated that dipole radiation appears in the Rosen
theory because the effective strength of the elements of is determined by the factorTµν

, which is generally position dependent.  In the weak field approximation, goesg 1 2 g 1 2

to the constant 1 so that, in this approximation, there can be no dipole radiation in the
Rosen theory.

The field equation (4.24), when contracted, gives

. (4.26)*
2 16h G Tλ

λ
λ

λπ=

When this is introduced back into (4.24) and taken to the right side, we have the
equivalent field equation

. (4.27)*
2 16

1

2
h G T Tµν µν µν

λ
λπ η= − −





Finally, we wish to express  in the weak field limit.  Using (4.20) and (4.21) in (4.18)t µν

and (4.19), and keeping only the lowest order terms, we find

(4.28)16
1

2

1

4
π η η ηµν

λρ στ
λσ µ ρτ ν µ ν µνG t h h A A Lg= − −, ,

and,

. (4.29)L h h A Ag = −
1

4

1

8
η ηλρ στ

λσ α ρτ
α

α
α

, ,

Far Field Approximation

We now make the further approximation that the gravitational energy-momentum
tensor  is to be evaluated far from the source .  The procedure and notation aret µν Tµν
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exactly as in the Brans-Dicke theory earlier.  Equations (2.20) - (2.25) and (2.32) apply. 
In particular, we recall (2.25) and (2.32) [see Section 2 for details].

(4.30)h k hµν σ σ µν, = �

and

, (4.31)k kρ
ρ = 0

which are valid far from the source.

Using (4.30), in the far field is from (4.23)Aα

. (4.32)A k hα α
λ

λ= �

Therefore,

(4.33)( )A A k k hα
α

α
α λ

λ= =�
2

0

from (4.31).  Applying (4.30) and (4.31) to the first term of (4.29), we find

. (4.34)
1

4
0η ηλρ στ

α
α

λσ ρτk k h h� � =

We conclude from (4.33) and (4.34) that in the far field

. (4.35)L g = 0

It is now a simple matter to apply (4.30) once again to (4.28), and to introduce (4.32), to
find that

( )16
1

2

1

2
2

π η ηµν µ ν
λρ στ

λσ ρτ
λ

λG t k k h h h= −





� � �

or,

(4.36)( )t
k k

G
h h hµν

µ ν ρτ
ρτ

λ
λπ

= −



32

1

2
2

� � �

in the far field.
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Comparison with General Relativity

We are now in a position to compare the weak, far field predictions of the Rosen theory
with those of general relativity.  To do so, we utilize the comparable results already
derived for the Brans~Dicke theory in the limit that the free parameter goes toω
infinity.

Starting with , we first write (2.43) in terms of the tensor field by substitutingt µν hµν

(2.41) for .  This leads toψ

t
k k

h h h hµν
µ ν λκ

λκ
λκ

λκπ
ϕ= − +



 +



16

1

20
�� � �

. (4.37)( )
( ) ( )( )[ ]+

+
+

+ + +




1

1 2
2 1 22

2ω
ω

ω ωλ
λ

λ
λ

λ
λh h h�� �

In the limit that goes to infinity, (4.37) goes over toω

, (4.38)( )t
k k

G
h h h h h h hµν

µ ν λκ
λκ

λκ
λκ

λ
λ

λ
λ

λ
λπ

G R = − + − −



16

1

2

1

2

1

4
2

�� � � �� �

where we have used also (2.16) for .  Likewise, the field equation (2.14) goes over toϕ0

, (4.39)*
2 16

1

2
h G T Tµν µν µν

λ
λπ ηG R = − −





and the conservation law is (2.60)

. (4.40)T µν
ν,

G R = 0

We note on comparing (4.38), (4.39), and (4.40) with (4.36), (4.27), and (4.22) that the
weak, far field conservation law and field equation in the Rosen theory are identical to
those in general relativity, but that the gravitational energy-momentum tensors
apparently differ.

In fact, (4.36) and (4.38) are genuinely inequivalent expressions.  There is no elementary
relationship within general relativity or the Rosen theory that can be used to establish
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their identity.  Yet, they are entirely equivalent in their global consequences as we shall
demonstrate below.

The root of the ambiguity lies in the principle of equivalence (of gravitational and
inertial forces), which is satisfied by both general relativity and Rosen's theory.  It is a
consequence of the equivalence principle that it is not possible to say with certainty
how much of a perceived force is inertial and how much is gravitational at a localized
point of space-time.  For example, it is always possible to define the coordinate system
so that all forces at a specific point and time are reduced to zero.  If the gravitational
energy-momentum were described by a true tensor, the result at that point would have
to be unambiguously zero in all frames.  But, by assumption, it is not.  Therefore the
gravitational (pseudo) tensor is locally ambiguous and, in this case, the difference
between (4.36) and (4.38) constitutes a specific example of that ambiguity.

Globally, the Rosen theory and general relativity make identical predictions as we now
show.

We showed in Section 2 that, if the motion is periodic, it is appropriate to average . t µν

In this connection we showed that

. (4.41)h h h hλκ
λκ

λκ
λκ

�� � �= −

(Equation (2.47)).  By the same argument, it follows that

. (4.42)( )h h hλ
λ

λ
λ

λ
λ�� �= −

2

As a consequence of these, the average of (4.38) can be written

. (4.43)( )t
k k

G
h h hµν

µ ν λκ
λκ

λ
λπ

G R = −
32

1

2
2

� � �

Now let us assume that has a continuous spectral distribution as given by (3.4) andhµν

(3.5).  We argued in Section 3 that in such a case it is appropriate to compute the power
spectral density, which involves integration of over all time.  In the Rosen theory wet µν

have from (4.36), and (3.12) and (3.14), that 
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( ) ( )[d t t
k k

G
d d e x e x′ = − ′ ′ ′ −∫∫∫

−∞

+∞

−∞

+∞

µν
µ ν ρτ

ρτπ
ϖ ϖ ϖ ϖ ϖ ϖ

32
& &

, ,

( ) ( )] ( )( )− ′ ′ + ′ ′ =
−∞

+∞

∫1
2 e x e x d t i tλ

λ
λ

λϖ ϖ ϖ ϖ& &
, , exp

, (4.44)( ) ( ) ( )[ ]= −∗

−∞

+∞

∫
k k

G
d e x e x e x

µ ν ρτ
ρτ

λ
λϖ ϖ ϖ ϖ ϖ

16
2 21

2
& & &

, , ,
R o s en

where .  In general relativity, the same operations on (4.38) give′ =t k xλ
λ

( )[ ]dt t
k k

G
d d′ = ′ ′ + ′ ×

−∞

+∞

−∞

+∞

∫ ∫∫µν
µ ν

π
ϖ ϖ ϖ ϖ ϖG R

16
2 1

2

( ) ( ) ( ) ( )[ ] ( )( )× ′ − ′ ′ + ′ ′ =
−∞

+∞

∫e x e x e x e x d t i tλκ
λκ

λ
λ

λ
λϖ ϖ ϖ ϖ ϖ ϖ& & & &

, , , , exp1
2

. (4.45)( ) ( ) ( )[ ]= −∗

−∞

+∞

∫
k k

G
d e x e x e x

µ ν λκ
λκ

λ
λϖ ϖ ϖ ϖ ϖ

16
2 21

2
& & &

, , ,
G R

We see on comparing (4.43) with (4.36) and (4.45) with (4.44) that, though  has nott µν

been defined identically in the two theories, there are no differences whatever in the
global predictions for periodic and aperiodic systems given the field.  Moreover, the
equations that govern the field ((4.27) and (4.39)) and conservation ((4.22) and (4.40)) are
identical also, so that in the weak, far field approximation the bi-metric theory of Rosen
makes predictions identical to those of general relativity.

Applications

Therefore, specific relationships for quadrupole radiation in the Rosen theory follow by
letting go to infinity in our previous results for the Brans~Dicke theory.  For periodicω
systems we have from (2.84) that
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. (4.46)( ) ( )dE

dt

G
Q Qij k

k

R o se n

= −
15

3
2 2

��� ���

(Symbols defined in Section 2).  For the example of a binary system, we have from
(2.126)

. (4.47)( ) ( )
dE

dt

G m M

a m MR o se n

=
+

+ +

−













32

5

1

1

4 2 7

5 4

2 4

2 7 2

73
24

37
96ε ε

ε

This can be related to the change of orbital period by using (2.130).  In the case of PSR�T
1913+16, (2.134) gives

 1.53 x 1032 , (4.48)
dE

dt R o sen

=
g  cm
se c

2

3

which leads to

3.36 x 10-12 (Rosen) (4.49)�T = se c se c

from (2.136).

Finally, the 2-sided power spectral density function associated with a system of
colliding particles follows from (3.61) by letting go to infinity.  The result, which isω
the same as for general relativity, is

. (4.50)( )
( )P

G
m mN M N M

N M

N M N M

N M

N MN M

ϖ
π

η η
β

β β

β
β

R o sen =
+

−

−
+







∑4

1

1

1

1

2

2 1 2 ln
,

(Symbols defined in Section 3).
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5.0  Conclusion

Dipole gravitational radiation from a binary system in both the Brans-Dicke and Rosen
theories is proportional to the square of the difference of the self-gravitational binding
energy per unit mass for the two bodies (9).  That is, the dipole radiation is proportional
to

, (5.1)
Ω Ω1

1

2

2

2

m m
−









where  and  are the masses of the bodies,m1 m2

, (5.2)
( ) ( )

Ω = ′
′

′ −∫
1

2
3 3d x d x

x x

x x
& &

& &

& &
ρ ρ

b od y

and is the distribution of rest-mass density within the body.  Moreover, this( )ρ &
x

radiation is proportional also to the square of the first ((11), Brans-Dicke) or second
((12), Rosen) derivative of the relative separation vector.  It follows that there are two
circumstances under which there might be coincidentally no detectable dipole radiation
from a binary system, though the Brans-Dicke or Rosen theory might apply: circularity
of the orbits or a fortuitous combination of mass and mass distribution within each
body such that (5.1) is negligible.  In the case of PSR 1913+16, the first possibility is
obviated by the known high eccentricity,  = 0.617155, (1).  However, until the preciseε
internal structures of both bodies of the pair are known, the second possibility remains
open.  We cannot at this time make a definitive choice between the Brans-Dicke theory,
the Rosen theory, and general relativity on the basis of the prediction of dipole
radiation in the first two.  This situation might change in the future if a sufficient
number of systems of this type are discovered that either there is clear evidence of the
dipolar contribution, or a strong statistical argument can be advanced against multiple
instances of the two fortuitous circumstances in which dipole radiation does not occur.

As our results show, radiation of the quadrupole order in all three theories 6 that is,
Brans-Dicke, Rosen, and general relativity 6 occurs independently of the detailed
internal structure of the participating bodies.  Consequently, knowledge of the
theoretical quadrupole radiation rate in each theory might enable, on the basis of
observation of the one binary system PSR 1913+16, an unambiguous determination of
which theory is obeyed by nature.
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Unfortunately for this program, the Rosen and general relativistic predictions are
identical.  No matter how good the observational data, we shall never be able to
distinguish between these two theories on the basis of quadrupole radiation.

In the Brans-Dicke theory on the other hand, the radiation rate is a function of the
parameter .  As can be seen from Figure l or (2.135), the predicted range of theω
derivative of the orbital period of PSR 1913+16 as a function of positive due toω
quadrupole radiation is

3.36 x 10-12  6  2.76 x 10-12  =  0.6 x 10-12 ,se c se c

whereas the observational uncertainty established by Taylor et al. (1) encompasses a
range

3.8 x 10-12  6  2.6 x 10-12  =  1.2 x 10-12 .se c se c

The observational uncertainty currently exceeds the range attainable through
adjustment of by 2:1.  Once again, we cannot make a definitive statement regardingω
the Brans-Dicke theory on the basis of current observations of PSR 1913+16 and the
assumption that the dominant radiation mode is quadrupolar.

It has been argued recently on the basis of independent observations (18) that mustω
exceed a value of about 300.  If this is so, the Brans-Dicke and general relativistic
predictions for PSR 1913+16 become very nearly equal, as can be seen from Figure 1,
and the chances of ever being able to distinguish between these two theories in this
manner appear remote indeed.

Finally, we have developed the power spectral density for a system of colliding
particles in the Brans-Dicke and Rosen theories, again based on the weak field
approximation.  The result in the Rosen theory is identical to that in general relativity. 
Indeed we have shown that this is the case for all predictions of the Rosen theory in the
weak, far field approximation.

The result in the Brans-Dicke theory, (3.61), exhibits dependency on the free parameter
.  For comparison with general relativity, we can write (3.61) asω

(5.3)( )
( )P

G
m m

A B
N M N M

N M

N M N MN M

N M

N M

ϖ
π

η η
β

β β

β
β

=
+

−

−
+







∑4 1

1

1

2

2 1 2
,

ln

where:
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Figure 2.  Coefficients A & B, collision problem, Brans-Dicke theory.

      and      . (5.4)
( )( )
( )( )A =

+ +
+ +

2 7 1

2 3 2

ω ω
ω ω ( )( )B =

+ +
+ +

2 3 2

2 3 2

2ω ω
ω ω

Figure 2 is a plot of coefficients  and  as functions of positive .  We see that forA B ω
greater than 300,  and are very close to 1, their values in the general relativisticω A B

limit (4.50).  We conclude that if astronomical objects are ever observed to radiate
through collision processes, the present bound on will again preclude discriminationω
between the Brans-Dicke and general relativistic theories in this order of
approximation.
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APPENDICES

.νA.  Consequences of the Conservation Law T µν 
, = 0

B.   Evaluation of an Integral Relating to a Binary System.

C.  Evaluation of an Integral Relating to a System of Colliding Particles.
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Appendix A

Consequences of the Conservation Law:

. (A.1)T µν
ν, = 0

(A.1) may be written

, (A.2)T T i
i

µ µ0
0 0, ,+ =

which we can specialize to

(A.3)T T i
i

00
0

0 0, ,+ =
and

. (A.4)T Tj ji
i

0
0 0, ,+ =

Multiply (A.4) by , integrate over all space, and discard the surface terms on thex k

assumption that goes to zero sufficiently rapidly at spatial infinity.  We findT µν

d x x T
t

d x x T d x x Tk j k j k ji
i

3 0
0

3 0 3& & &
, ,∫ ∫∫= = − =

∂
∂

( )= − − ∫x T d x x Tk ji k
i

ji3 &
,

or,

(A.5)d x T
t

d x x Tjk k j3 3 0& &=∫ ∫
∂
∂

where we have used also

. (A.6)x k
i

k
i, = δ

Now multiply (A.3) by and likewise integrate to getx xj k

d x x x T
t

d x x x T d x x x Tj k j k j k i
i

3 00
0

3 00 3 0& & &
, ,∫ ∫∫= = − =

∂
∂
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( )[ ]= − − +∫x x T d x x x x x Tj k i j
i

k j k
i

i0 3 0&
, ,

or,

. (A.7)( )d x x T x T
t

d x x x Tk j j k j k3 0 0 3 00& &+ =∫ ∫
∂
∂

Since is symmetric in , we may write (A.5) asT jk jk

. (A.8)( )d x T
t

d x x T x Tjk k j j k3 3 0 01

2
& &∫ ∫= +

∂
∂

Substitution of (A.7) into the right side of (A.8) gives

(A.9)d x T
t

d x x x Tjk j k3
2

2
3 001

2
& &= ∫∫ ∂

∂

If we multiply (A.3) by and integrate we findx k

d x x T
t

d x x T d x x Tk k k i
i

3 00
0

3 00 3 0& & &
, ,∫ ∫∫= = − =

∂
∂

( )= − − ∫x T d x x Tk i k
i

i0 3 0&
,

or,

(A.10)d x T
t

d x x Tk k3 0 3 00& &∫ ∫=
∂
∂

We have defined in the text the moments of T 00

(A.l1)( ) ( )M t d x T x t≡ ∫ 3 00& &
,

(A.12)( ) ( )D t d x x T x tk k≡ ∫ 3 00& &
,



-66-

. (A.13)( ) ( )Q t d x x x T x tij i j≡ ∫ 3 00& &
,

In terms of these definitions, we have from (A.9) and (A.10) that

(A.14)( )d x T Q tjk ij3 1
2

& =∫ ��

and

(A.15)( )d x T D tk k3 0& =∫ �

where dot denotes .∂ ∂t

Finally, we consider and .  From (A.l1) and (A.3), we find�M ��D k

. (A.16)( )�M t d x T d x T i
i= = −∫ ∫3 00

0
3 0& &

, ,

(A.16) can be expressed as a surface integral using Gauss’ Theorem.  By letting the

surface approach infinity and assuming that goes to zero sufficiently rapidly atT µν

infinity, we conclude that

(A.17)( )�M t = 0

Likewise, take the time derivative of (A.15) and use (A.4) to get

. (A.18)( )��D t d x T d x Tk k ik
i= = −∫ ∫3 0

0
3& &

, ,

By the argument just used with (A.16), we conclude from (A.18) that

(A.19)( )��D tk = 0
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Appendix B

Evaluation of an Integral Relating to a Binary System:

. (B.1)( )I dE
E

E
=

−
∫

sin

cos

2

5
0 1 ε

π

First, consider

( ) ( ) ( )( )d

dE
E n E E

n n
1 1

1
− = − −

− − +
ε ε εcos cos sin

or,

. (B.2)( ) ( ) ( )1
1

1
1

− = − −
− + −

ε
ε

εcos
sin

cosE
n E

d

dE
E

n n

Set in (B.2), substitute into (B.1), and do one integration by parts to getn = 4

. (B.3)( )I
E

E
dE=

−
∫

1

4 1
4

0ε ε

π cos

cos

Now introduce the change of variable

x E= −1 ε cos
into (B.3) to get

, (B.4)I
dx

x R

dx

x R
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


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where

.( )R x x= − + −ε 2 21 2

The two integrals in (B.4) can be reduced to integrals of the form

(B.5)
dx

x R1

1

−

+

∫
ε

ε
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by using entry 231, 9a of (17) recursively.  (B.5) is evaluated using entry 231, l0a of (17). 
One finds, finally, that

. (B.6)( )I =
+

−
π ε

ε8

4

1

2

2 7 2
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Appendix C

Evaluation of an Integral Relating to a System of Colliding Particles:

(C.1)
( )

( )( )I d
P P

P k P k
N M

N M
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λ

λ
λ

λ
λ
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2
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The integral can be writtenI
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& &

where
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Pick the coordinate system so that  is along the 3-axis and  is in the 2,3-plane.  To
&
v N

&
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ease the notation a bit, re-label  and  as  and , respectively, so that
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8  Ref. (17), entry 331, 41a, Bestimmte Integrale.
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 may now be written in terms of (C.7) and (C.8) asI 1

(C.9)I d
d

1
0 0

2

=
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θ θ
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α β ϕ

π π
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by using the change of variable
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9  Ref. (16), entry 2.261.
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Finally, (C.13) may be evaluated with the aid of9

(C.16)( )dx

R c
cR cx b= + +∫

1
2 2ln

where:

.R a bx cx= + + 2

By utilizing the properties of the 4-vectors (C.3) along with (C.5), and by defining the
relative speed
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one can show that
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